NC-AFM studies of the CaSiO₃ (100) surface with adsorbed CO₂ and H₂O Luca Lezuo, ^{1,#} Andrea Conti, ¹ Alexander Hoheneder, ¹ Elena Vaníčková, ² Domitilla Aloi, ¹ Rainer Abart, ³ Florian Mittendorfer, ¹ Michael Schmid, ¹ Ulrike Diebold ¹ and Giada Franceschi ¹ # Presenting author's e-mail: lezuo@iap.tuwien.ac.at The interaction of wollastonite (CaSiO₃), a silicate mineral, with CO₂ and water is highly relevant in the field of carbon capture [1], rock weathering [2] and cement production [3]. We have investigated the preferentially cleaved (100) surface in ultrahigh vacuum (UHV) and exposed it to controlled amounts of H₂O and CO₂ at 100 K. Using non-contact atomic force microscopy (NC-AFM) with functionalised tips, combined with ab-initio density functional theory (DFT) and AFM-simulations [4], we determined the atomic structure of the cleaved surfaces and the adsorption configurations of H₂O and CO₂. The cleaved surface exposes rows of alternating calcium and oxygen atoms. Between these rows, water adsorbs molecularly and without a barrier in a nested position, which was not reported in previous literature. The nested H₂O molecule aids the adsorption of the CO₂, which in turn forms a carbonate-like structure due to its interaction with the surface. At higher coverage, the strongly bound water forms regular patterns. - [1] W. J.J. Huijgen, et al. Chem. Eng. Sci. 61, 4242 (2006). - [2] D. Feng, et al. J. Clean. Prod., 414, 137625 (2023). - [3] H. Huang, et al. J. Clean. Prod., 211, 830 (2019). - [4] N. Oinonen, et al. Comput. Phys. Commun., 305, 109341 (2024). **Figure 1. Wollastonite (100) surface:** (a) DFT-optimised structure with one 'nested' H₂O per unit cell. (b) 5.5 x 5.5 nm² nc-AFM image of the cleaved surface reacted with H₂O at room temperature, overlaid with the DFT-derived AFM simulation. (c) 9.0 x 9.0 nm² nc-AFM image of the surface with adsorbed CO₂, overlaid with the simulation. (d) 7.0 x 7.0 nm² nc-AFM image showing the second and partial third layer of adsorbed H₂O molecules. ¹ Institute of Applied Physics, TU Wien, Vienna, 1040, Austria ² Central European Institute of Technology, Brno University of Technology, Brno, 601 77, Czech Republic ³ Department of Lithospheric Research, Universität Wien, Vienna, 1090, Austria